Sensitivity analysis of disclosure control measures

EFGS conference, Sofia, 2013

- David Martin, Klaus Steinnocher, Ekkehard Petri
- Acknowledgements: Mario Köstl, Tanja Tötzer

Outline

- Previous presentation introduced "GEOSTAT 2011 A population grid for Europe"
- This presentation describes related work investigating the potential disclosiveness of including social characteristics in the GEOSTAT grid
- Overview of datasets and potential risks
- Development of simulated disaggregated grid dataset
 - Reference data
 - Adjustment methodology
- Results: evaluation of alternative disclosure thresholds
- Conclusions

Overview of datasets and potential risks

- Small population counts in grid cells present the risk of inadvertent disclosure of data about identifiable individuals
- The more unusual the socioeconomic characteristics, the greater the risk of disclosure and the more that might be learned by an "intruder"
- European NSIs adopt different confidentiality thresholds to reduce risk
- If a grid of socioeconomic characteristics were to be produced, what would be the impact of different thresholds on the utility of the data?
- Variables selected for sensitivity analysis:
 - pop > 65
 - male * pop > 65
 - women * employed
 - women * employed * in area

Development of a simulated disaggregated grid dataset

- Have total population per cell from GEOSTAT2006 grid
- Have social characteristics for whole grid area at LAU2 level
- Do not have social characteristics at cell level
- Linear disaggregation would simply assign LAU2 mean values of each variable to each cell
- Need a method to adjust these initial cell values to generate a more plausible statistical (and spatial) distribution
- Use reference distributions for appropriate variables from countries where cell or small area data are available
- Reference areas: Two urban and rural NUTS2 areas in each of Norway (NO01 Oslo-Akershus, NO02 Hedmark-Oppland) and Austria (AT13 Wien, AT31 Oberösterreich); All Output Areas in England

Example: Norway reference data (11455 cells with nonzero population)

Distribution of total population

Distribution of proportion who are males aged over 68 in cells with population below 30

5

Norway 68+

Cell Pop < 30

Cell Pop 30-100

Cell/OA Pop 100+

Population over 68/65

Austria 65+

Southampton

Adjustment methodology

- Identify best-matching reference distribution for each variable in each population size range: <30, 30-100, 100+
- Initially assign LAU2 mean proportion to every cell in that LAU2 for each social characteristic
- Draw random offsets from the best-matching reference distribution and adjust the initial values in terms of offsets from the mean value
 - (In the long run, the adjusted distribution would reflect the shape of the reference distribution, but preserving local mean)
- Skip very small LAU2s and very small populations (no balanced adjustment possible)
- Re-scale adjusted values to preserve total counts within each LAU2
- Use this dataset to assess the effect of different confidentiality thresholds
- (Methodology implemented in VBA)

Adjustment example: NL Population 65+ LAU2 values

Adjustment example: NL Population 65+ adjusted values

Adjustment example: NL Population 65+ adjustment sizes

Reference distributions used to adjust each population characteristics grid

	Over 65	Male over 65	EmpEcAc Fem	EmpEcAc Fem InArea
Pop under 30	NW over 68	NW over 68	NW over 68	<i>NW over</i> 68
Pop 30-99	AT over 65	AT male over 65	AT male over 65	AT male over 65
Pop 100 and over	EN over 65	EN male over 65	EN EmpEcAc Fem	EN EmpEcAc Fem

Black = good match; *Red = approximate match*

Results: evaluation of alternative disclosure thresholds

- This adjustment methodology has been applied across the entire GEOSTAT 2006 grid for the selected social characteristics
- Four thresholds (3, 10, 30, 50) have been applied to the original and adjusted variables
 - These can be compared to the thresholds in the reference data (0 for Norway, 30 for Austria and 100 for England) – there is wide variation in current European threshold values
- We can assess the differences in the suppression of each variable before and after adjustment, according to cells and populations

Percentage of cells suppressed (Netherlands), Pop 65+

Thresholds	3	10	30	50
Original distribution	22,4%	51,0%	71,6%	76,7%
Modelled distribution	27,7%	53,5%	72,2%	77,5%

Percentage of cells suppressed (Finland), Pop 65+

Thresholds	3	10	30	50
Original distribution	63,1%	86,5%	94,7%	96,6%
Modelled distribution	60,7%	84,2%	94,1%	96,3%

Percentage of cells suppressed (Netherlands)

Thresholds	3	10	30	50
Total population	3,8%	11,3%	29,1%	41,4%
65+	27,7%	53,5%	72,2%	77,5%
Male 65+	44,8%	68,6%	80,8%	85,2%
Female employed	21,8%	42,9%	66,5%	73,8%
Female employed in area	35,8%	60,0%	76,7%	81,4%

Percentage of cells suppressed (Norway)

Thresholds	3	10	30	50
Total population	27,5%	50,0%	67,1%	73,4%
65+	60,9%	75,9%	85,9%	89,4%
Male 65+	71,9%	83,9%	91,6%	94,7%
Female employed	54,8%	71,0%	81,5%	86,1%
Female employed in area	61,0%	74,2%	85,1%	88,9%

Percentage of population suppressed (Netherlands)

Thresholds	3	10	30	50
total population	0,0%	0,1%	0,7%	1,6%
65+	0,5%	2,5%	6,7%	9,4%
Male 65+	1,5%	5,7%	12,4%	17,8%
Female employed	0,3%	1,4%	5,3%	7,8%
Female employed in area	0,7%	3,1%	8,0%	11,1%

Percentage of population suppressed (Norway)

Thresholds	3	10	30	50
total population	0,3%	1,3%	3,3%	5,0%
65+	2,4%	6,1%	13,5%	19,5%
Male 65+	4,5%	11,6%	25,8%	38,3%
Female employed	1,5%	3,8%	9,0%	13,9%
Female employed in area	2,1%	4,8%	12,2%	17,7%

Netherlands – effect of thresholds on male 65+, beside total population

Norway – effect of thresholds on male 65+, beside total population

Conclusions

- The adjustment methodology permits the evaluation of thresholding impacts on more realistic distributions of social characteristics in cells
 - But it will not fully reflect spatial autocorrelation in the grid
- Extremely small cell values present in the grid present great challenges for disclosure control by thresholding
- Problems are most severe for unusual social variables and very small population sizes – especially in rural areas and sparse countries
- Impact on population is less severe than for cells, but there will still be large distortions in the maps
- If the thresholds used in the most conservative countries were to be applied across the grid, most of the data would be suppressed in some countries
- Potential value of exploring alternative perturbation or modelling methods that preserve totals but would not require such high levels of suppression

